The Mandelbrot set is a special shape, with a fractal outline. Use a computer to zoom in on the set’s jagged boundary and no matter how deep you explore, you’ll always see near-copies of the original set — an infinite, dizzying cascade of self-similarity and novel features. The Mandelbrot set is a perfect example of how a simple mathematical rule can produce incredible complexity. This video covers how the Mandelbrot set is constructed by iterating a quadratic function on the complex plane. It also delves into the connections between Mandelbrot and Julia sets while explaining the mechanics of how they both work. We also retrace the history of the discovery and exploration of these important sets, including current research on solving the key Mandelbrot Locally Connected conjecture (MLC).
Related article - Can MEN and WOMEN ever be equal?
Decoding Math's Famous Fractal: The Mandelbrot Set
Quanta Magazine